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Abstract-—-The plane contact problem for an elastic layer lying on an elastic half space is considered. A com-
pressive load is applied to the layer through a frictionless rigid stamp. It is assumed that the contact between the
layer and the subspace is also frictionless and only compressive normal tractions can be transmitted through the
interface. Hence, the width of the contact area along the layer-subspace interface is finite and is unknown. The
problem is formulated in terms of a system of singular integral equations in which the unknown functions are
the pressure between the stamp and the layer and that between the layer and the subspace. First the problem is
solved for the special case of concentrated loads. Two typical stamp geometries, namely, a flat stamp with sharp
corners and a curved stamp, are then investigated. In the case of flat stamp the system of integral equations is
homogeneous and as a consequence the width of the contact area between the layer and the subspace turns out
to be independent of the magnitude of the external load applied to the stamp. In the curved stamp problem,
however, the size of this contact region is a function of the magnitude of the external load.

1. INTRODUCTION

IN THIS paper we will reconsider the plane contact problem for an elastic layer lying on
an elastic half space. Due to its application to a variety of important structural problems,
in the past the problem has attracted considerable attention (see, for example, [1-3] for
the general description of the contact problems in elastic solids, and [4-12] for some recent
solutions regarding the problem of the elastic layer). In the great majority of the papers
published on the subject, it is assumed that both the stamp and the subspace are rigid.
However, at the expense of some increase in the analysis and in the numerical work, this
restriction can easily be removed provided the overall dimensions, particularly the local
radius of curvature, of the stamp are sufficiently large in comparison with the character-
istic dimension of the contact area so that the stamp may be approximated by a half space
(see, for example, [3] and [10]).

Another assumption which is generally made in contact problems refers to the inter-
face conditions between the layer and the subspace. It is invariably assumed that along the
interface either the displacements and the stresses, or only the normal components of the
displacements and the stresses are continuous. The former boundary conditions cor-
respond to the practical problem of an elastic layer which is perfectly bonded to the sub-
space. However, from the physical viewpoint the latter conditions, which also include
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zero shear stress along the interface, are clearly unrealistic as they imply that tensile as
well as compressive tractions can be transmitted through a frictionless contact. Under
sufficiently high body forces (such as gravity) generating an additional compressive con-
tact stress, the resulting normal tractions may remain compressive throughout the inter-
face and hence, the second set of interface boundary conditions stated above may be
justified. However, this has to be demonstrated in each particular problem under con-
sideration. In the absence of friction between the elastic layer and the subspace the interface
boundary conditions which are physically meaningful would be that of *'receding contact”™
[13]. According to this concept, since only compressive contact stress can be transmitted
through the frictionless interface, upon the application of the load to the stamp the width
of the contact area on the layer-subspace interface becomes finite. As the magnitude of the
stamp load is varied, this width may either remain constant or may continuously vary
depending on the profile of the stamp.

For concentrated or distributed known normal tractions applied to the free surface of
the layer the problem was considered in [14-16]. The layer is assumed to be a “plate” in
[14] and an elastic continuum in [15] and [16]. The solution given in [15] is approximate.
[16] gives an elegant treatment of the plane as well as the axisymmetric problem. In [16],
through the application of standard techniques, the related set of dual integral equations
is reduced to a Fredholm type integral equation which turns out to be homogeneous. This
implies that conceptually the problem 1s of an eigenvalue type and hence, for a given
system of external loads. The contact area is independent of the magnitude of the loads.

In this paper we will consider the contact problem for an elastic layer in which the
external load is applied to the layer through a frictionless rigid stamp. It will be assumed
that the contact between the layer and the elastic subspace is frictionless and the interface
may transmit only compressive stresses. In this problem the contact stresses under the
stamp as well as on the interface are unknown. The problem is formulated in terms of a
system of singular integral equations in which the unknown functions are the contact
stresses. The formulation offers some obvious advantages, the most important ones
being (a) it is quite general anc can easily be extended to the problem of multiple stamps,
(b) the effect of friction can be taken into account by incorporating the technique followed
in [3] into the formulation, (¢) the solution directly gives the most important physical
quantities, namely the contact stresses, and (d) the type of singular integral equations
arising from the formulation and the related methods of solution have been extensively
studied.
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FiG. 1. The geometry for receding contact problem.
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2. DERIVATION OF THE INTEGRAL EQUATIONS

Referring to Fig. 1, let an elastic layer 1 lying on an elastic subspace 2 be subjected to a
compressive load P through a rigid stamp 3. Let the thickness of the layer be h and the
elastic constants of the two materials be y;, k;, (i = 1, 2) where y; is the shear modulus
and k; = 3—4v, for plane strain and x; = (3—v;)/(1+v;)} for generalized plane stress, v;
being the Poisson’s ratio. Assuming that x = 0 is a plane of symmetry for the stamp and
for the external loads, the displacements and the relevant stress components in the layer
and in the subspace may be expressed in terms of the following Fourier integrals (see,
e.g. [17]):

2 (® )
u,(x,y) = ;J (A, +A,y)e” ¥ +(A;+ Ayy) e?] sin ax da,
0

vx, ) = %f {[A1+(%+y)A2] e‘“y+[—A3+(%—y)A4] e“y} cos ax da,
0

1 2+ K+l ]
2—#‘10';}) = ;J\O {— [a(A1+A2y)+—2——A2] (i

(la—d)
1
+|:—oz(A3+A4y)+K1+ AJ e"} cos ax da,
1 2 (~ K, —1 Y
2] ot
Kk,—1 .
+la(Ad;+Auy)— 5 A, | e} sinax da,
2 .
uy(x, y) = —f {B,+ B,y} ¢ sin ax do,
TJo
2 (” K,
vy(x, y) = — —B,+|—=—y|B,; e* cos ax da,
nJo o
1 2 1 (2a-d)
“ Ky+
2—#Zafy = ;J; {—a(B1+Bzy)+ 22 Bz} e” cos ax do,
1 2 [ -1 .
03, = —J ac(B1+Bzy)—K2 B,? e sin ax da,
2u, nJo 2
where the unknowns A;, (i = 1,...,4) and B;, (j = 1,2) are functions of a, which are

determined from the boundary conditions at y = 0 and y = h.
Assuming that the contact between the stamp and the layer and that between the layer
and the subspace are frictionless, the boundary conditions may be expressed ast

o5, =0, 0%, =0, o, = 0y, (y=0 —0 <x < x) (3a—c)

+ Here the problem is formulated under the physical assumption that the contact between the layer and the
subspace is along a single arc, |x| < b, or, more precisely, the contact stress is zero for |x| > b, b being an un-
known. The condition that the contact stress must be compressive for |x| < b has to be separately verified.
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i =0, {(y =0,ix} > b),

¥y

] (3d)
a—'[v 1(x7 +0)“UZ(X3 _O)] = 03 (‘x‘ < b).,
X
o5 =0, (y=h, -0 < x < o), (4a)
o, =0, (y=hlx>a)
(4b)

0 . .
TUI(X’ h) = f(x), (lxl < a),
oX

where f(x} is a known function which is obtained by differentiating the equation giving
the profile of the stamp. In (3d) and (4b), the continuity conditions for the displacement
are expressed in terms of derivatives for dimensional consistency in the integral equations
of the problem.t The constants a and b specifying the contact areas are unknown and are
determined from the following equilibrium conditions :

faaMxhnu==~P, (5)

b
J o5(x,0)dx = ~P. (6)
—b

Conditions (3a-<c) and (4a) give four algebraic equations in 4; and B; which are used to
eliminate four unknowns. The remaining two unknown functions are obtained from the
system of dual integral equations given by the mixed conditions (3d) and (4b). Here, instead
of writing down the system of dual integral equations, we will first define the following
two unknown functions:

Pix) = 0y(x, h),  py(x) = a;,(x,0). (7a, b)
From (3d) and (4b), it follows that
pix) =0, (x| > a),
pax) =0, (x| > b).

It is now clear that if (3d) and (4b) are replaced by (7a, b), substituting from (1) and (2)
into (3} and (4) and inverting, all the unknown functions A4; and B; may be expressed in
terms of p; and p, in the following form:

(8a, b)

L] b
Aoy = m“(oc)f pi{t)cos at d£+mi2(a)f p,(t) cos at dt, {i=1,....4),
] 4]

, (9a,b)
Bja) = nj(a)f p,(t) cos at dt, (j=1,2),
Q
where |
—-1
nl(a) = K:u o s nZ(a) = 5;’
2 2 (10)

1= =20k + (K — 142K ah) e
mll(a) - 4#1&,6“(2-*—40!2.‘12“‘3—2“—62&&) *

¥ For a detailed discussion see [18].
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The expressions for the remaining known functions m;(«), which are omitted, are similar
to m; () given by (10). The functions A4; and B; as given by (9) satisfy all the boundary
conditions in (3) and (4) except the second part of the mixed conditions (3d) and (4b).
Substituting from (9) through (1) and (2) into these latter conditions, we obtain the system
of integral equations for the unknown functions p, and p,. Thus, by using the symmetry
conditions p{x) = p{—x), (i = 1, 2) and after separating the singular part of the kernels,
we obtain the following system of singular integral equations.}

a 4
fpﬁm.[hﬁnmdwfdeMUd " px, O < a),

1 + K,
(11a, b)
b Pz(f ) de
[ PO o ars [ s opandi =0, (<)
, t—
where
14 20h+20?h*—e”
11(% =2f [e (1ot e 2%k sin ot — x) da
* —l—oh+(1—oh)e > _
kll(x’ t) =2 0 1+e——4ah_(2+4a2h2)e—2ahe hSln a(t_x) da
1+
kyy(x, 1) = —2£k12(X, ) (12a—e)
1+

k22(x7 t) = Tkl 1(X, t)

(L+ Ky = (T +K,)u,

h= (14K Dy +(1+K,)u,

Here, the bi-material constant § is the same as that found in [16]. However, it should
be pointed out that if f(x) is not zero, the solution will depend on y, and «, as well as
on f.

The infinite integrals giving the Fredholm Kernels k;(x, 1), (i j = 1, 2) in (12) may easily
be evaluated by using Filon’s integration formula [19] However, if one examines the
integrands of k;;, it may be seen that they have a double pole at « = 0. Hence, the integrals
if treated separately, will be divergent and their evaluation requires special care. Writing
the functions k;(x, t), (i, j = 1,2) as

>

kifx, t) =J h;fx, t, o) da
0

=f hifx, t, o) da+f hifx, t, o) da (13)
0 €

+ The procedure used in this paper for separating the singular kernels is identical to that followed in [17].
Hence, the intermediate steps leading to the singular integral equations have been omitted.
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where ¢ is an arbitrarily small positive constant, for example the integral equation (11a)
may be expressed in the following form:

j p_;(%‘?‘-hf pl(t)dzU hll(x,z,cx)dwf h“(x,t,a)da]
- a 0 :

b € 0 4
+f_bp2(t) dtl:L hy,(x,t, a) doH—J-E hys{x, t,a) da:l = 1:?:} f(x), (x < a). (14)

It 1s not difficult to show that the integrals evaluated in the range ¢ < o < o0 in (13) and
(14) are uniformly convergent and will not cause any trouble. On the other hand, for small
values of o, h,, and h,, may be expressed as

6h(t — x)a> — 12h%(t — x)o> + [14h3(t — x) — h(t — x)* Ja* +0(fx5)
ha® — 20 +0(x®)
6h(t — x)a? — 12h%(t — x)o> + [14h>(t — x) — h(t — x)>Joa* + O(ec® )
Pralx ta) = — h*a* — 2k 4 0(a®)

Ayxta) =
{15a, b)

Clearly, at « = 0 h;; has a pole of order 2, which leads to divergent kernels. However, in
the integral equation if we consider the terms involving the integrals around « = 0 to-
gether, using (15), (14) becomes

a a =L b o
f p;(_’):l+f pldtf huda+f pzdtf hy, de
+J pBlt—x)dt f [h3 2+0(l)}

b ‘6 4n
-[ pwu-xa| [m 2+0(1)] =T/ (ma<x<a), (9

where the terms (O(1) contain the variables x and t. Thus, from (16} it is seen that since

a b
f puedt =0, j pyOtdr =0,
. .
(17)

a b
[ pwa - j paD)dL,
—a -b

considered together, the coefficients of the divergent integrals in (15) will be zero. Hence,
basically k;; (i, j = 1, 2) may be treated as Fredholm kernels,

In practice it is not necessary to split the range of integration (0, «0) into (0, &) and
(¢, 00) in evaluating the Fredholm kernels. From (15-17) it is seen that around o = 0 the
first terms in the numerators and the denominators of hi; which will contribute to the
kernels k;; are those containing a*, and because of (17) o? and o® terms in the numerators
will have no contribution. This amounts to saymg that one can evaluate the kernels k;;
from the integrals glven in (12) by simply assuming that the value of the integrand hu,
(i, j = 1,2) at & = 0 is equal to the ratio of the fourth derivative of its numerator to the
fourth derivative of its denominator evaluated at a = 0, which is finite.
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3. A SPECIAL CASE: CONCENTRATED LOADS

First consider the simple case of two concentrated loads applied to the layer at y = A,
x = Ft,. This may be considered as the special case in which the stamp degenerates into
two disconnected knife edges. Here p,(t) is known and is given by

py(t) = —Pd(t—to) — Po(t+1o), (18)

where P is the concentrated load per unit length in z-direction. The unknown contact
stress p,(x) between the layer and the subspace must again satisfy (11b) which, using (18),
may be written as

J"’ p,(ty de

p I—X

j Kya(x, Opalt) dt = Plhyy(x to)+has(x — o), (Xl < B (19)

In (19) the contact width 2b is unknown which is determined from the following equilibrium
condition:

b
f pi(x)dx = —2P. (20)
—-b

Dividing both sides by P and referring to [20], from (19) and (20} it is immediately seen
that the unknown function p,/P and the constant b can uniquely be determined from the
solution of the singular integral equations. It then follows that the constant b will depend
on the location t, of the load but will be independent of its magnitude P. From (19} it is
also seen that if P is replaced by distributed loads, b again will be independent of the
magnitude of the load which is a multiplicative constant in the expression of the external
loads. This is the same conclusion arrived at in [14-16].

To solve (19), it is convenient to define the following dimensionless variables and
function:

r = x/b, s =t/b, A = ab, H=h/b
So = Lo/b, @(r) = p,(rb)/P
With (21), (19) and (20) may be written as

(21)

1
j o0) dS+J K, (H, r, s)p(s)ds = K, ((H, r, 50)+ K, ((H, r, —50), <), 22

1 $—r

1
b e(s)ds = —2, 23)
-1
where K;(H, r,s) is obtained from k;; by simply replacing h, x, t by H, r, s, respectively.
For a given set of constants t;, and h even though (22) and (23) has a unique solution, it
can only be determined by some kind of interpolation. A simple procedure to evaluate b
and ¢(r) would be the following: For a given s, = t,/b solve (22) and compute

1
@(b) = bf o(s)ds (24)
-1

for various values of H = h/b. The correct value of b is that satisfying ®(b) = — 2, which
can be obtained by interpolation to any desired degree of accuracy. The integral equation
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FiG. 2. The variation of ¢{b) with b/h for various values of 1. { = 1.0).

is solved by using the technique described in [21]. Figure 2 shows some sample results
giving ®(b) as a function of b/h for various values of t,/b and § = 1.

Figures 3-5 show the calculated results for the concentrated loads. Figure 3 shows the
contact width b as a function of f§ for —1 < f# < 1 corresponding to oo > (u,/u,) > 0. It
is seen that as (u,/¢,) —» oo b — oc. Figure 4 shows the distribution of the contact stress
p, for t, = 0 and for various values of f. Figure 5 shows the function p, for various values
of 1, calculated from f = | which corresponds to the case of a rigid subspace. At approx-
imately to/h = 1.2 it is seen that the contact stress at x = 0 becomes zero. Therefore for
to/h > 1-2 there will be two contact areas along —b, < x < —b, and b; < x < b,. In
this case since the general solution (1) and (2) is given for x > 0, it is possible (and prefer-
able) to express the integral equation for x > 0 and t > 0. Thus the singular integral
equation again involves a single arc b, < x < b, and its solution may be obtained by
using the technique described in [21]. In this double contact problem the two conditions

0 ; -
-10 -85 0 05 10 g

FiG. 3. The variation of the contact width with 8. The circles correspond to the result given in [22].
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FiG. 4. The distribution of contact stress for various values of §, (t, = 0).

giving the constants b, , and b, are
by
[ htax = -p 29)
by

and, noting that the index is — 1, the consistency condition of the integral equation.

4. SOLUTION FOR A FLAT STAMP

Let the layer be loaded by a rigid stamp with a flat profile (see the insert in Fig. 6). The
system of integral equations (11) must now be solved under

a b
f(x)=0, f p.()dt = —P, f p,(t)dt = —P. (26a—c)
—a b

Dividing both sides of (11a,b) and (26b, c) by P, we obtain a system of homogeneous
singular integral equations for the unknown functions p,/P and p,/P which must be

~hp, 2P
10
toh=0

08 tsh=03

0.6 1 £-h=05 t-h =0833

041 t/h=12

02

¢ T Y T g
4] 05 10 i5 20 xoh

F16. 3. The distribution of contact stress for various values of 1,/ (f = 1.0).
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F1G. 6. The variation of contact width with § for loading by a flat stamp.

solved under a set of nonhomogeneous conditions (26b, c). At the end points x = Fa the
function p, has integrable singularities, whereas at x = Fb, p, is bounded {and is zero).
Thus the index of (11a) is +1 and its general solution will contain an arbitrary constant
{see [20]). (26b) is the additional condition which accounts for this constant. On the other
hand the index of (11b} is — I, which also contains the unknown constant b. Theoretically,
{26¢) is the condition which accounts for this constant. It is then clear that (11) and (26}
will provide a unique solution for the unknowns p,(x)/P, p,{x)/P, and b. This means that
in this problem too the width of the contact area b will be independent of the magnitude
of the external load P.

To solve the integral equations (11) we again define a set of dimensionless variables
and functions. Note that (11a) and (11b) are the displacement continuity relations at
y = h and y = 0, respectively. Hence, by designating the variables {x,t} on y = h and
y =0 by {x.,t,) and (x,, 1,}, respectively we may now define

ry = x4/a, 5, = t,/a, A= ab, H = h/b
ryo=X3/b, 8, = 1/b, 27
pilas)/P = @i(s)),  pabs2)/P = ,(s,).
Substituting from (27), the integral equations (11) and the equilibrium conditions (26b, c)

may be expressed as

t (P(S) 1 2
f - ds; + Z M fr:, s)ofs)ds; =0, (i=1L21r <1, (28a, b)

151 —1 =1

t I
a j ousds, = —1, b j (52 ds, = — 1, (292, b
-1 -1
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where the kernels M;; are given by

a® . la
M, (ry,8,) = Bf F,(AH) Sm[gi(sl “r1):| di,
0

Mlz(rl,rz)zf Flz(iH)sin[l(sz—grl)] da,
0

e8]

a
M, (ry,s,) = BJ

0

F, (AH) sin [l(%sl — rz):l d4,

0

Mos(rs, s5) = f F, o (AH) sin[A(s, ~ ;)] dA;
0 (30a-h)
142 H+212H? —e~ 24

I+e ¥ —(2+4)2HY) e 7

—1-AH+(1—AH)e
I+e (2 +42HY) e 3

Fy (AH) = 2 e 24

Fi,(AH) = 2e

FGH) = 2Pk am,

1
Fuatit) = 2P E, m)

Since variables r; and s; all have the same range (—1, 1), in the subsequent analysis it is
not necessary to keep the indexes (i, j = 1, 2) in (28-30).

The fundamental functions of the singular integral equations (28a) and (28b), re-
spectively, are (see [20])

wi(s) = (1—s?)7%, w,(s) = (1—s?)%. (31a,b)

Thus, noting that w, and w, are, respectively, the weight functions of the Chebyshev
polynomials 7,(s) and U (s} and taking into account the symmetry properties @;(s) = @,(—s),
(i = 1, 2), the solution of (28) may be expressed as

@1(8) = wi(8) Y A, Tonls),  @as) = wals) Y B,Ua(s). (32a,b)
0 0

The unknown constants 4, and B, are obtained (in terms of b) by substituting from (32)
into (28a, b) and (29a) and by using the method described in [21]. To determine b we
again define

1
b)) = b f @,(s) ds. (33)
-1

From (29b) it is seen that for the correct value of b we have ®(b) = — 1. Thus the correct
value of b (as well as that of ¢, and ¢,) may be obtained by solving the integral equations
for various values of b and interpolating in ®(b) vs. b plane (see, e.g., Fig. 2).

Figures 6 and 7 show some calculated results. Figure 6 shows the variation of the
half width of the contact area between the layer and the half space as a function of the
bielastic constant § which is given by (12¢). The results are given for a/h = 4, 2 and 0
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F1G. 7. The pressure distribution between the layer and the half space for various values of § and for
loading by a flat stamp.

where a is the half width of the stamp, & is the layer thickness and the last case, i¢,a =0
corresponds to the concentrated load which was discussed in the previous section. It is
again seen that as p,/u, - 0,ie.as f—> —1, b — 0.

The distribution of the contact pressure between the layer and the subspace is shown
in Fig. 7. Here the two sets of curves plotted for various values of § again correspond to
a/h = 2 and a/h = 4. Note that the contact pressure has peaks in the neighborhood of
the stamp ends x = Fa.

5. SOLUTION FOR A CURVED STAMP

Consider now the problem for a symmetric curved rigid stamp with a local radius of
curvature R (see the insert in Fig. 8). In this case the contact width 2g at y = h as well as
the contact width 2b at y = 0 is unknown, and the input function dv,(x, h)/0x is given byt

f(xy = x/R, (x| < a). (34)

The unknown functions p, and p, are bounded at the end points x = Fa and x = Fb,
respectively. Hence, the index for both singular integral equations (11a) and (11b}is —1,
and consequently the solution of the nonhomogeneous system (11) does not involve any
arbitrary constants [20] The unknown constants a4 and b can then be determined from the
equilibrium conditions (26b, ¢). It is now clear that in this problem the contact width 2b
between the layer and the subspace will not be independent of the magnitude of the external
load P

To solve the problem, in addition to the dimensionless variables defined by (27), we
define the following functions:

pilas} = ¥ (sy), Pa(bs,) = ¥ylss). (35a, b)

+ Within the confines of other assumptions inherent in the linear theory of elasticity, the solution given in
this section is valid for any value of a/R if the profile of the stamp is a parabola given by y = x?/2R + constant.
Otherwise it is assumed that the depth of penetration and the contact width are “small” compared to the local
radius of curvature R.
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F1G. 8. The variation of the layer-subspace contact width with § for loading by a curved stamp, (R = h).

The integral equations (11) and the equilibrium conditions (26b, ¢) may then be expressed
as

f_(sr)d + ZM (r, W s ds = ), (rl < Li=1,2),
B 4 (36a—c)
L0 U _
g (r) = 1+x, R/a’ g,(r) = 0,
1 1
Y (s)ds = — P, b f Y,(s)ds = —P, (37a,b)
-1 1

where the subscripts in the variables r and s are dropped, and the Fredholm kernels M,;
are those defined by (30). The fundamental function for both integral equations given by
(36) is

w(r) = (1=r?)%. (38)

Thus the solution of (36) may be expressed as
Yir) = (1-r?)? Z AuUslr),  (i=12), (39)

where the unknown coefficients A4,, are again determined by using the technique described

n [21]. In the problem the constants x,, u,, f§, h, R and P are given and a, b, ¥ (r) and
,(r) are unknown. However, in practice the problem is again solved in an inverse manner;
namely, it is assumed that instead of the load P, the contact width 2a is specified, and
ignoring the condition (37b), the integral equations (36a) are solved for various values of
b. Then computing the quantity

Fib) = b f bre)ds—a| ¥io)ds, (40)

the correct value of b corresponding to the specified value of a is obtained by interpolation

in such a way that F(b) = 0. After determining b, the load P is obtained from (37).
Figures 8-11 show some of the numerical results. In all the numerical examples con-

sidered in this section it was assumed that R = h. The variation of the half-contact width,
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F1G. 9. The variation of P with § for various a/R ratios, (R = h).

b on the layer-subspace interface as a function of the bielastic constant § is shown in
Fig. 8 for two (relatively speaking, widely different) values of a/R = 0-4 and a/R = 0-1.
The results obtained for a/R = 0-2 (which are not shown in the figures) were hardly dis-
tinguishable from that corresponding to a/R = 0-1. The figure shows that for R = h the
contact width 2b is not appreciably affected by the ratio a/R. However, it should be noted
that P varies as f§ is varied for a fixed value of a/R, and as g/R is varied for a fixed value
of f. This may be seen from Fig. 9 where, for various values of a/R, the variation of P is
shown as a function of §. From Figs. 8 and 9 it may then be concluded that in the case
of a curved stamp for given dimensions h and R and a given material constant §, unlike
the results found in the two previous sections, the contact width 2b is a function of the
magnitude of the external load P.

Figures 10 and 11 show the distribution of the contact stress between the layer and
the subspace for a/R = 0-1 and a/R = 04, respectively. The values of P corresponding to
various values of § used in these figures are different and may be obtained from Fig. 9.

0 ,
0 05 10 15 x/R

Fia. 10. The distribution of the contact stress between the layer and the subspace, (¢/R = 0-1, h = R).
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F1G. 11. The distribution of the contact stress between the layer and the subspace, (a/R = 0-4, h = R).

Perhaps a somewhat unexpected feature of the pressure distributions shown in these
figures is that their peak generally is not at x = 0.

6. DISCUSSION AND CONCLUDING REMARKS

The result for the concentrated load, i.e. t, = 0, shown in Fig. 3 is indistinguishable
from that given in [16], where an entirely different method was used to solve the contact
problem. Comparison of the Figs. 3 and 8 indicates that the result for the curved stamp
with (a/R) = 0-1, and R = h is very nearly the same as that of the concentrated load. This
may also be seen from Fig. 9 where for (a/R) = 0-1 the resultant load P is nearly inde-
pendent of f.

The concentrated load result for the problem under consideration using the classical
plate (or beam) theoryt was recently given in [22], where the following expression for the
contact width was obtained:

b 1-p\*
7= 0-737(m) (41)

The values obtained from (41) are shown in Fig. 3 as small circles. The agreement appears
to be rather poor. The discrepancy may be due to the highly approximate nature of the
theory as well as the method of solution of the related integral equation employed in [22].

By using the technique described in this paper, the problems of a nonsymmetric stamp
and multiple stamps may be treated without too much difficulty. In principle all these
problems may be reduced to a system of singular integral equations defined on a set of
nonintersecting arcs the theory of which has been extensively studied [20].

Since the symmetric problem for a flat stamp with sharp corners discussed in Section 4
is the only contact problem for which the resulting system of singular integral equations

+ The equations used in [22] for the half-space are that of plane strain and are appropriate for the plate prob-
lem. However, for the beam problem the plane stress modification of these equations would have been physically
more meaningful.
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is homogeneous, only for this case the width of the contact area between the layer and the
subspace will be independent of the magnitude of the compressive load applied to the
stamp. For all other stamp geometries including those for which the stamp width 2a is
constant, the contact width on the layer—subspace interface will be dependent on the
magnitude of the applied load.
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ABCTpakT—OO0CYKAa€TCA TUIOCKAs KOHTAKTHAs 3a/a4a s YIPYroro ¢Jjos, JIEXallero Ha Ynpyrom nosjiy-
poctpancTe. CxMMaemas Harpyska NPHIOXKEHA K CIOI0 NMOCPENCTBOM XECTKoro wtamna, Ge3 yudera
Tpenus. [loapa3iymMeBaercs, 4TO HET TPEHUS B KOHYAKTE €108 C NOANPOCTPAHCTBOM H TOJIbKO CXMMaeMble
HOPMAJIbHBIE TATOBbIE YCUITUA MOTYT MIEPENABATHLCS CKBO3bL NOBEPXHOCTHL pa3aena. CreaoBaTenbHO, IHMPUHA
0071aCTH COMPUKOCHOBEHUSA 11O MOBEPXHOCTH MEXAY CA0E€M U MOANPOCTPAHCTBOM KOHEYHA U HEHU3BECTHA.
PDOpMYIMPYETCS 3a/1aua B BUAE CUCTEMbI CHHTYJIADHBIX MHTErPaJIbHbIH ypaBHEHH, HEN3BECTHbIE QYHKLKH
KOTOPBIX ABJISOTCS AABIEHUEM MEXAY LITAMITOM ¥ CJIOEM M MEXAY CIIOE€M W MOANPOCTPAaHCTBOM. BriepBbie,
peliaeTcs 3amava a8 ABYX CMEUMATIbHbIX CllyyaeB COCPenoTOYeHHOM Harpysku. Uccnenytorcs, 3atem, aea
TUMA TEOMETPHUHU LUITAMNA, UMEHHO 1JIOCKMH LWITAMI1 ¢ OCTPbIMU YITIAMM M MCKPUBJIICHHBIH wtamn. dns
cydyas TJIOCKOTO LITAMIA CHCTEMA MHTETPAJIbHBIX YPaBHEHWH onHOpoaHa. BcneacTBue 3roro, 1uupuHa
KOHTAKTa MeX/Y CJI0eM M MOANPOCTPAHCTBOM HE 3aBUCUT OT BEJIMUMHDBI BHELUHENH HATPY3KH, MIPUIIOXKEHHOM’
K wrammy. OOHako, A 3a4aud WCKPHMBIEHHOTO luTaMma pa3mep obnacTu paoHa KOHTaKTa ABASETCS
(QyHKUMEH BEMYMHBI BHELIHEH HATPYy3KH.



